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Using positional data from video microscopy of a two-dimensional colloidal system and from

simulations of hard disks, we determine the wave-vector-dependent elastic dispersion relations in glass.

The emergence of rigidity based on the existence of a well defined displacement field in amorphous solids

is demonstrated. Continuum elastic theory is recovered in the limit of long wavelengths which provides

the glass elastic shear and bulk modulus as a function of temperature. The onset of a finite static shear

modulus upon cooling marks the fluid-glass transition in an intuitive and unique way.
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While fluids flow with a finite viscosity, solids respond
elastically to deformation. At the glass transition, a super-
cooled liquid transforms into a disordered solid which
possesses mechanical rigidity to shear deformations. The
corresponding elastic constant is the shear modulus � [1].
In crystalline solids, shear rigidity results from the long-
ranged correlations of displacements heralding the break-
ing of translational invariance. The transverse acoustical
displacements are the Goldstone modes, whose (squared)
amplitude scales with thermal energy in the equipartition
theorem.

Yet, the emergence of rigidity at the glass transition,
when an amorphous solid forms, remains poorly under-
stood. Obviously, the disorder makes it a subtle fundamen-
tal problem to apply the concepts of spontaneous breaking
of translational symmetry and of Goldstone modes.
Already on the macroscopic level, different predictions
exist for the behavior of the shear modulus � when an
amorphous solid forms. It has been predicted to jump
discontinuously by mode coupling theory [2,3] or to in-
crease continuously from zero by replica theory [4,5]. Such
a continuous power-law increase from zero holds at the
formation of a random gel, where a microscopic theory
has established the link between the modulus and the
Goldstone modes [6]. Also in the theory of granular
systems, critical fluctuations close to point J (which is
the density where a random athermal system becomes
jammed) cause a characteristic algebraic increase of the
shear modulus � from zero [7]. A more recent calculation
in replica theory again finds a jump in shear modulus at the
glass transition and identifies the displacement field of a
disordered solid, necessary to discuss elastic acoustic
modes. [8]. Definitions of displacement fields in disordered
solids have already been given in Ref. [9], yet the equipar-
tition theorem could not be established in this approach.

Colloidal dispersions offer the unique possibility that the
particle trajectories can be observed by video microscopy
and thus are ideally suited to study displacements micro-
scopically. In recent work on colloidal glass [10–12],
the covariance matrix of the particle displacements was

obtained, and the mechanical density of states and the
associated local modes were studied. But the shear
modulus and the elastic dispersion relations were not
obtained. Up to now, only in crystalline colloidal solids,
the equipartition theorem provided a route to obtain them
by microscopy [13,14].
In this Letter, we analyze the elastic properties for both

an experimental 2D colloidal glass former and for simula-
tion data of binary hard disks. We employ microscopy of
displacement fluctuations, establish the equipartition theo-
rem, and obtain the dispersion relations and elastic moduli.
Our analysis is based on a quasiequilibrium description of
the nonergodic glass state, which we derive under the
assumption of a kinetic glass transition. The moduli are
derived from thermally excited modes in the small wave
vector limit. A sudden rise in the shear modulus marks the
onset of vitrification. This proves that rigidity emerges
differently in glasses than in polymeric gels and jammed
granulates.
Here we briefly summarize our theoretical approach,

which will be given in detail elsewhere. The relation
_uqðtÞ ¼ vqðtÞ is the defining relation which introduces

the collective displacement field uqðtÞ; vqðtÞ is the familiar

velocity field [15]. Fourier modes depending on wave
vector q are considered to use translational invariance.
Let time averaging be denoted by an overbar so that �ri is
the average position of particle i 2 ½1; N� during the time
interval �t, and the particle’s displacement is uiðtÞ ¼
riðtÞ � �ri. To order O½q � uiðtÞ�, the field uqðtÞ follows

by integration:

u qðtÞ ¼ 1ffiffiffiffi
N

p XN
i¼1

eiq��riuiðtÞ: (1)

For this result to make sense, the particle displacements
uiðtÞ are required to remain bounded. For glass, this can be
shown by using the Zwanzig-Mori equations of motion of
the correlation functions [15], which are given in the
Supplemental Material [16]. They are determined by stress
kernels Gðq; tÞ, which in the limit of vanishing q reduce to
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the shear response GðtÞ measured in macroscopic linear
rheology [17]. We take glass to be a nonergodic state, so
that the stress kernels, like density fluctuations [3,18], do
not relax to equilibrium but take finite values at infinite
time (index 1), Gðq; tÞ ! G1ðqÞ, for t ! 1. This is an
idealization, as it requires that the structural relaxation
time �� becomes infinite, while it (only) becomes larger
than the measurement time in reality [19]. Then the
equations of motion lead to displacement autocorrelation
functions, whose equal time value obeys the equipartition
theorem in glass [16]:

ðhu�
quqiglassÞ�1 ¼ q2

nkBT

�
G1ðqÞþ q̂ q̂

�T
q

�
¼ 1

kBT
DðqÞ; (2)

where �T
q ¼ Sq=ðkBTnÞ is the isothermal compressibility

of the fluid with density n and structure factor Sq. The

averaged squared displacements are given by elastic coef-
ficients (the dynamical matrix D), which are the frozen-in
contributions in stress kernels. The superscript glass indi-
cates that averaging is done in a restricted phase space set
by the glassy state. As the so-obtained displacement fluc-
tuations are ergodic, time and ensemble averages agree
[20]; this was implicitly used in ansatz (1). The eigenvalues
�sðqÞ (the subscript s denotes polarization) of the dynami-
cal matrix D are the dispersion relations and give the
elastic spectrum of the amorphous system. In high sym-
metry crystals in 2D as well as in amorphous solids, the
elasticity tensor possesses only two independent elements.
These are the Lamé coefficients � and � of continuum
elasticity theory. In two dimensions, � gives the shear and
�þ � the bulk modulus, extracted from the transverse and
longitudinal displacements u?ðqÞ and ukðqÞ in the long

wavelength limit:

ð2�þ �Þ
nkBT

¼ lim
q!0

½q2hjukðqÞj2iglass��1; (3)

�

nkBT
¼ lim

q!0
½q2hju?ðqÞj2iglass��1: (4)

In order to validate our prediction in Eq. (2) that the
shear modulus G1 ¼ Gðt ! 1Þ derived from frozen-in
stress correlations equals the one from static displacement
fluctuations, � ¼ G1, we performed Brownian dynamics
simulations of a binary mixture of hard disks in two
dimensions [16,21]. Figure 1 shows the time-dependent
shear stress correlation function GðtÞ for (area) packing
fractions� close to the glass transition. The mode coupling
glass transition was determined as �c � 0:796 [21]. The
GðtÞ exhibit a two-step relaxation process with a finite
amplitude of the final (so-called �) process. It decays
only for times comparable to the structural relaxation
time ��. Conventionally, it is obtained from fitting, e.g.,
a Kohlrausch law to the final decay [19,22]. When, upon
raising �, the time �� increases beyond the observation
window, a finite frozen-in amplitude remains which is G1.

Figure 1 shows that at intermediate times in the super-
cooled fluid, and in the glass, the shear elastic constant
is finite.
Yet the simulations in Fig. 1 are very demanding so that

earlier ones remained inconclusive on G1 [23], which
advocates the more efficient method to correlate the dis-
placement fluctuations. Quite intuitively, we use the time-
averaged center of the trajectory as the equilibrium site of a
particle. Its displacement is determined relative to this
position as a function of time [24]. This goes beyond 3D
crystals, where lattice sites can be used. The latter is
unfeasible in amorphous solids as well as in 2D crystals
where strict long-range translational order is spoiled due
to Mermin-Wagner fluctuations [25]. Arrows in Fig. 1
indicate the lengths �t of different trajectories used to
calculate the shear modulus � from the displacement
fluctuations according to Eq. (4). The expression for �ri
holds as long as �t is smaller than the relaxation time ��.
The results for � are shown in Fig. 2 for different �t
and �. The comparison for the states at � ¼ 0:80 and
0.81 shows that � calculated from displacement fluctua-
tions agrees with G1 calculated from the stress autocorre-
lation function. This verifies our theory. The modulus �
takes finite values as long as the structural relaxation time
�� exceeds�t, as can be seen from Fig. 1. Approaching the
mode coupling glass transition at�c from above,� softens
but stays finite in Fig. 2. Note that the time scale in Fig. 1
is logarithmic: Because of the equidistant sampling used
to measure hju?ðqÞj2i, the final part of the time signal
dominates. This explains that in Fig. 2 for � ¼ 0:80 the

FIG. 1 (color online). Shear modulus GðtÞ from simulations of
a glass forming mixture of hard disks for different packing
fractions; D0 is the dilute diffusion constant. Arrows indicate
the length �t of the trajectories, used to calculate the displace-
ment fluctuations used in Fig. 2. At � ¼ 0:81, a horizontal bar
marks the plateau value G1 ¼ 124nkBT. At � ¼ 0:80, a
Kohlrausch law G1e�ðt=��Þ� is fitted to the final decay; G1 ¼
77nkBT, �� ¼ 1900nD0, and � ¼ 0:60.
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measurement using �t ¼ 3472 is below the shorter ones.
The final � process already affects this measurement.
While this decay lacks a theoretical description, for the
present context it suffices that it does not affect G1 [26].
On the fluid side, the modulus drops to very small values
for �t longer than the time scale of short time correlations.
Because Eq. (4) measures a squared quantity, it can give
only a positive value, which, however, converges to zero
with increasing �t in the fluid.

After having validated our method, we apply it to the
experimental 2D colloidal glass. The system consists of a
binary mixture of superparamagnetic polystyrene spheres
confined to a flat water-air interface [27]. The species A
(diameter � ¼ 4:5 �m) and B (� ¼ 2:8 �m) have a rela-
tive concentration of 	 ¼ NB=ðNA þ NBÞ � 45%, where
NA and NB are the number of particles of both species in
the field of view. An external magnetic field H, perpen-
dicular to the interface, lets us control the particle inter-
actions in situ. This is expressed by the dimensionless
coupling parameter

� ¼ �0

4


H2ð
nÞ3=2
kBT

½	�B þ ð1� 	Þ�A�2; (5)

which acts as an inverse temperature. n denotes the 2D
number density computed via Voronoi tessellation. �A;B is

the susceptibility of species A and B. Video microscopy
and digital image analysis provide the position of individ-
ual particles as a function of time.

In Fig. 3, the measured dispersion relations are shown
for different interaction parameters �. Filled and empty
symbols represent spring constants for longitudinal and
transverse modes, respectively. The existence of transverse

elastic modes signals the solid. The small noise in the
measured curves is remarkable and unexpected based on
the complicated eigenvalue and eigenvector structure of
the covariance matrices obtained from the instantaneous
displacements in real space [10–12]. The Fourier-
transformed displacements introduced in (1) apparently
are a good set of modes. Their dispersion correlates with
the mean particle separation a defined from the density
a2n ¼ 1 revealing to the short-range order of the glass. The
growing amplitude of the curves for increasing � reflects
the expected stiffening of the system upon cooling.
From the dispersion relations, the moduli can be ob-

tained via Eqs. (3) and (4). We chose an intermediate
regime (0:8< qa < 2:0) for the extrapolation q ! 0
where the data for linear regression fit best [13,28]. As
the time interval �t enables us to differentiate between
high frequency and low frequency moduli, we discuss the
dependence on�t first. Reducing�t (corresponding to high
frequencies), Fig. 4 clearly indicates the expected growth
of the shear modulus for both typical fluid (� ¼ 169) and
solid (� ¼ 394) states. These results are consistent with
Ref. [29]. At the same time, we see that for long sampling
times�t, its exact value makes no significant difference for
computing the shear modulus. This is marked by a plateau
(blue dashed line in Fig. 4). The plateau is more stable
than the one in the mean squared displacement [30,31],
which is already affected by the � process at a correlation
time �MSD

� of about a few 105 s (inset in Fig. 4). The

FIG. 2 (color online). Shear moduli � (in nkBT) from simu-
lation as a function of area fraction �. With increasing trajectory
length (�t given in units of nD0), � converges towards zero in
the fluid. Crossing �c, � jumps to a finite value for �t < ��.
G1 ¼ 124 at � ¼ 0:81 and G1 ¼ 77 at � ¼ 0:80 (dark star and
green rhombus from Fig. 1) agree within errors with � from
Eq. (4). The inset shows the transverse glass dispersion relations. FIG. 3 (color online). The longitudinal (up) and transversal

(bottom) dispersion relation of 2D colloidal glass for different
interaction parameters � (inverse temperatures) as extracted
from the displacements of particles from their time-averaged
positions. Filled and empty symbols represent longitudinal and
transverse polarizations, respectively.
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plateau in the shear modulus, however, ranges from 104 up
to 105 s (which is the longest experimental sampling time
we measured). In Figs. 4 and 5, the bulk modulus is
included. It stays finite in the fluid phase for large �t as
expected. But since the amplitude square of the longitudi-
nal mode is 10 times smaller compared to the transverse
one, it is more strongly affected by structural relaxations at
�� (e.g., aging) and/or Mermin-Wagner fluctuations [25]
known from 2D crystals and also by a finite particle
resolution [28] (see the error bars of Fig. 5). Therefore
we focus on the shear modulus in the following.

Figure 5 displays the measured temperature dependence
of the moduli [32]. As expected, the shear modulus � is
zero in the fluid phase (first three data points). As we
further cool down our sample, we find an onset of �,
indicating the beginning of vitrification where the system
becomes rigid (indicated by the shading). The magnitude
of � compares well to a mode coupling calculation � ¼
13nkBT (dashed arrow in Fig. 5) [33]. With the given
temperature resolution of the experimental data, we cannot
decide unambiguously if the shear modulus jumps discon-
tinuously (as we did with the simulation data). But Fig. 5
clearly marks the region of vitrification which was un-
known for 2D amorphous systems with long-range particle
interaction.

In conclusion, we have shown that video microscopy
allows us to obtain the elastic dispersion relation of an
amorphous solid directly from the spatially Fourier trans-
formed displacement fields. The classical equipartition

theorem holds, and in the long wavelength limit we can
extract the elasticity from the dispersion relation. A finite
quasiequilibrium shear modulus marks the onset of vitrifi-
cation in the experimental 2D system.With simulation data
we were able to show that this transition is discontinuous
(unlike in granular systems or gels). Our work establishes
microscopy of displacements as a novel spectroscopic
technique in supercooled liquids and glasses. This is of
especial interest in soft matter systems where the classical
definition using a viscosity �> 1012 Ns=m2 does not hold.
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